
TransSkel Programmer’s Note 5 SkelInit() and SkelInitParams
TransSkel
Programmer’s Notes

5: SkelInit() and SkelInitParams
Who to blame: Paul DuBois, dubois@primate.wisc.edu
Note creation date:10/09/93
Note revision: 1.03
Last revision date: 11/18/94
TransSkel release: 3.04

This Note describes the SkelInitParams structure used by SkelInit() as of
TransSkel release 3.04.

05/02/94 — Revised Note to change ResumeProcPtr to SkelResumeProcPtr.
11/18/94 — Revised Note for TransSkel 3.18 universal header/PowerPC changes.

Purpose and History of SkelInit()

The first TransSkel function an application calls is usually SkelInit(), which
initializes the various Macintosh managers and determines some of the characteristics of
the machine on which the application is running.

In the earliest releases of TransSkel, SkelInit() took no arguments:

void SkelInit(void);

This was somewhat limiting. For instance, an application may wish to call MoreMasters() to preallocate master blocks of memory
pointers, and it may wish to install a grow zone procedure for dealing with low-memory conditions. SkelInit() is the most logical
place to do these things, so it was changed (in release 2.00) to take two arguments:

void SkelInit(Integer noMasters, GrowZoneProc gzProc);

Here noMasters is the number of times to call MoreMasters()and gzProc is the grow zone procedure. This change introduced an
incompatibility with previous releases of TransSkel and applications had to be changed accordingly.

The new SkelInit() was more capable, but it left other limitations unaddressed. SkelInit() calls InitDialogs(), which can be
passed a pointer to a resume procedure to be called if a fatal system error occurs. However, SkelInit() just passed nil to
InitDialogs(), leaving the application no way to specify the procedure if desired. SkelInit() also provided no way to adjust the
application stack size.

It’s possible to rectify these problems by adding more arguments to SkelInit(), but that’s another incompatible change. Furthermore,
future changes might necessitate yet more arguments, which would require applications to change the way they call SkelInit() again.

Page 1

TransSkel Programmer’s Note 5 SkelInit() and SkelInitParams

Page 2

TransSkel Programmer’s Note 5 SkelInit() and SkelInitParams
The New Calling Sequence

If an incompatible change is going to be made, it might as well be such as to limit the
impact of additional changes in the future. The approach chosen was to modify
SkelInit() to take a single argument, a pointer to a structure specifying the
initialization parameters. As of release 3.04, SkelInit() is declared like this:

void SkelInit (SkelInitParamsPtr p);

To make it easy for applications requiring no special setup, default parameter values are used if the application passes nil.

Passing a pointer to a structure allows the SkelInit() calling sequence to remain the same forever. The structure itself may change
someday, but that will cause little problem if the calling program follows the rules described in the next section.

The initialization parameters structure is declared like this:

typedef struct SkelInitParams SkelInitParams, *SkelInitParamsPtr;

struct SkelInitParams
{

Integer skelMoreMasters;
GrowZoneUPP skelGzProc;
SkelResumeProcPtr skelResumeProc;
Size skelStackAdjust;

};

The structure members are used as follows:

• skelMoreMasters

The number of times to call MoreMasters(). The default is six times.

• skelGzProc

The grow zone procedure. The default is nil. For 68K code, GrowZoneUPP is equivalent to GrowZoneProcPtr. For PowerPC
code, GrowZoneUPP is a routine descriptor; you should not use a function pointer directly.

• skelResumeProc

The resume procedure to be passed to InitDialogs(). As of System 7, the resume procedure is obsolete, so a value of nil is
recommended. (nil is also the default.) You can still specify a non-nil value for pre-System 7 applications.

SkelResumeProcPtr is a typedef for functions defined like this:

pascal void MyResume (void);

SkelResumeProcPtr is used rather than ResumeProcPtr as a compatibility workaround (the latter has disappeared from
recent Apple header files). This structure member, unlike the grow zone member, was not converted to a UPP type when the universal
headers became available, because resume procedures are obsolete on all systems which require UPP’s.

Page 3

TransSkel Programmer’s Note 5 SkelInit() and SkelInitParams
• skelStackAdjust

The amount by which to adjust the default stack size. The default is 0.

Compatibility Guidelines

The new calling sequence is incompatible with releases of TransSkel prior to 3.04, and
older applications need to change the SkelInit() call. However, this need be done
only once, and future modifications to TransSkel should have little impact. The
SkelInit() calling sequence will remain stable (one argument, a pointer to a
structure), and it will continue to be true that an application wishing to use the default
initialization parameters can pass nil to SkelInit().

If your application uses initialization parameters other than the defaults, it can be written
to be compatible with SkelInit() in the event of future changes to the
SkelInitParams structure. The thing you should not do is declare and statically
initialize a SkelInitParams structure, e.g., like this:

SkelInitParams initParams =
{

10,
MyGrowZone,
nil,
8096

};

SkelInit (&initParams);

The problem with this approach is that it may fail if the internal structure of the SkelInitParams type changes. For instance, if new
members are added to the end of the structure, the C compiler will initialize them to 0, but that may not be the appropriate default.

The proper way to specify non-default values for initialization parameters is to use the function SkelGetInitParams(). You pass it a
pointer to a SkelInitParams structure, which TransSkel fills in with the default values. Then you can change any fields for which the
defaults are unsuitable and pass the pointer to SkelInit():

SkelInitParams initParams;

SkelGetInitParams (&initParams); /* get default values */
initParams.skelMoreMasters = 10; /* change fields appropriately */
initParams.skelGzProc = MyGrowZone;
initParams.skelStackAdjust= 8096;
SkelInit (&initParams);

This method makes sure you get the values you want for any structure members you change explicitly, and if any new structure elements
are added in the future, they’ll get the default values.

The Grow Zone Procedure and PowerPC Code

If you are compiling PowerPC code, the grow zone procedure should be a routine

Page 4

TransSkel Programmer’s Note 5 SkelInit() and SkelInitParams
descriptor, not a function pointer. To write your code so it can be compiled for either the
68K or PowerPC environments, you might do this:

Page 5

TransSkel Programmer’s Note 5 SkelInit() and SkelInitParams
#if skelPPC /* PowerPC code */
RoutineDescriptor gzDesc =
 BUILD_ROUTINE_DESCRIPTOR(uppGrowZoneProcInfo, MyGrowZone);
GrowZoneUPP gzProc = (GrowZoneUPP) &gzDesc;
#else /* 68K code */
GrowZoneUPP gzProc = MyGrowZone;
#endif

SkelInitParams initParams;

SkelGetInitParams (&initParams);
initParams.skelGzProc = gzProc;
SkelInit (&initParams);

Summary

To use the default initialization parameters, call SkelInit() like this:

SkelInit (nil);

Otherwise, declare a structure of type SkelInitParams. Pass it to SkelGetInitParams(), change the fields appropriately
afterward, then pass the structure to SkelInit():

SkelInitParams initParams;

SkelGetInitParams (&initParams);
/* ...change fields here... */
SkelInit (&initParams);

Page 6

